
case for the downgrading procedure illustrated in Figure 7.
Here, the input and output files are hard-coded. (Note that a
more general downgrading function might permit the input
and output files to be function parameters, in which case the
results would parallel those of the guard.) Writing from a
high input to a low output violates the type inference rules
and no type results, as indicated by (?). As in the case of the
guard, the editor has identified code for which further
analysis is needed. Ideally, such code should be isolated in
its own domain to be executed by multilevel subjects, while
the remainder of the application can be executed by single-
level subjects.

4. Summary

In this paper, we have presented ongoing work to
develop a practical tool to assist the developers of trusted
applications. Our tool does not take the place of the careful
design and analysis that should be applied to the
development of TCB software, however, it does permit
software developers to isolate code which violates policy
from that which is benign. We anticipate that the editor
could be employed in the development of very large
software applications and that, as is the case with all other
tools used in the development of trusted systems, the editor
would be maintained under a life-cycle assurance program
commensurate with the target evaluation class of the
intended trusted application. Software certified by the editor
provides an additional level of confidence that the security
policy will not be violated. This can be especially important
in environments where the same code is executed by both
single-level and multilevel subjects.

Currently, the editor implements only that part of the type
system that guarantees programs do not violateexplicit
information flow policy. We plan to extend the system to
handle what Denning callsimplicit information flows as
well. This will addresslegitimate channels by which
processes can transmit information between security classes
[12]. Some progress has been made in this regard. However,
covert channels will not be considered. Finally, in some
cases, the system may claim there is a violation when really
there is not. This is also true of Denning’s system [6] and is
a consequence of the unsolvability of deciding security.

References
[1] Department of Defense Trusted Computer System Evaluation

Criteria, DoD 5200.28-STD, National Computer
Security Center, June 1985

[2] Bell, D.E. and LaPadula, L.J.,Secure Computer Systems:
Mathematical Foundations, Vol. I-III, ESD-TR-73-278,
The MITRE Corp., Bedford Mass.

[3] Brix, H. and Dietl, A., “Formal Construction of Provably
Secure Systems With Cartesiana”Proc. 1990 IEEE
Symp.on Security and Privacy, Oakland, CA, May 1990,
pp. 319-331.

[4] Denning, D.,Secure Information Flow in Computer Systems,

Ph.D. thesis, Purdue University, May 1975.
[5] Denning, D., “A Lattice Model of Secure Information Flow,”

Communications of the ACM, 19, 5, 1976, pp. 236-242.
[6] Denning, D. and Denning, P., “Certification of Programs for

Secure Information Flow,” Communications of the
ACM, 20, 7, 1977, pp. 504-513.

[7] Denning, D., “Cryptographic Checksums for Multilevel
Database Security,” Proc. 1984 IEEE Symposium on
Security and Privacy, Oakland, CA, April 1984, pp. 52-
61.

[8] Denning, D.,Private communication, March 1995.
[9] Fuh, Y.C. and Mishra, P., “Type Inference with Subtypes,”

Theoretical Computer Science, 73, 1990, pp. 155-175.
[10] Gordon, M., “HOL, A Proof Generating System for Higher-

Order Logic,” in VLSI Specification, Verification and
Synthesis, G. Birtwistle and P. Subrahmanyam, (Eds.),
1988, pp. 73-128.

[11] Irvine, C. E., “A Multilevel File System for High
Assurance,”Proc. 1995 IEEE Symp.on Security and
Privacy, Oakland, CA, May 1995, pp. 78-87.

[12] Lampson, B., A Note on the Confinement Problem,
Communications of the ACM, 16, 10, 1973, pp. 613-615.

[13] Schell, R. R., and Brinkley, D., “Concepts and Terminology
for Computer Security,” in Information Security: an
Integrated Series of Essays, M. Abrams, S. Jajodia, and
H. Podell (Eds.), IEEE Computer Society Press, Los
Alamitos, CA, 1995, pp. 40-97.

[14] Smith, G. S.,Polymorphic Type Inference for Languages
with Overloading and Subtyping, Ph.D. Thesis,
Department of Computer Science, Cornell University,
Technical Report 91-1230, 1991.

[15] Stansifer, R., “Type Inference with Subtypes,”Proc. 15th
ACM Symposium on Principles of Programming
Languages, 1988, pp. 88-97.

doing something undesirable without users ever knowing it.
When our system is used to develop code, however, it alerts
one to rogue programs like this one.

3.0.2 A guard: Observe that in the rogue file copy
example, the editor did not detect a policy violation in the
procedure. It merely concluded that the rogue procedure
can be used to copy only unclassified files if policy is not to
be violated. To rid ourselves of this restriction, we can
simply delete the offending put statement to restore the
generality of file copy. In some cases, generality cannot be
restored so easily.

As an example, consider a guard. Here we assume the
precise definition of a guard as described by Schell,
reported by Denning [7], and described by Schell and
Brinkley [13]. It has to partition the elements of a multilevel
stream according to their security classes. Its operations are
based upon credible access labels which are attributes of the
stream elements and may be certified to be in compliance
with security policy. A guard is defined in Figure 6. Heref

File ^Edit ^View ^Tools ^Options ^Structure ^Text^Help

Context: exp e<exp> <exp> e fun fix if while

λ rc. λ wc . λ f .
 let i = ropen (rc, f) in
 let ou = wopen (wc, OUTPUT_U) in
 let oc = wopen (wc, OUTPUT_C) in
 let os = wopen (wc, OUTPUT_S) in
 let ot = wopen (wc, OUTPUT_T) in
 letvar v := get (i) in
 while v != EOF do
 case v of
 u : put (v, ou) ;
 c : put (v, oc) ;
 s : put (v, os) ;
 t : put (v, ot) ;
 end case;

v := get (i)
 end
: ∀ τ .τ → U → U → unit

Figure 6. Guard procedure

let<id><exp>e let<id>e<exp> letvar<id><exp>e
letvar<id>e<exp> e;<exp> <exp>;e

is a multilevel stream and the files opened for reading and
writing have the classifications suggested by their names.
The type inferred for the guard implies that the guard can be
called only with a single-level input stream consisting
exclusively of unclassified values:

∀ τ. τ → U → U → unit

But a guard cannot be limited this way, so in order to
recover its full generality, it must be developed outside of
the editor and verified some other way. The editor is useful
in such situations because it helps to identify system
components where more complex forms of analysis are
needed. This greatly reduces the amount of code that has to
be verified by more complex techniques. In our system, the
guard would have to be separately verified outside the
editor and re-introduced into the system by supplying an
appropriate typing for it, say,

∀ τ , γ with γ ⊆ τ. τ → U → γ → unit

Hereτ corresponds to the read class,rc, of the subject,U to
the subject’s write class,wc, andγ to the access class of the
file representing the multilevel input stream. This would
permit the guard to be called with multilevel input streams.
An exception would still be raised, though, if it were called
by a subject whose read class is lower than some element in
the stream, or whose write class is not unclassified.

3.0.3 A downgrader: Sometimes the editor will detect a
flow policy violation which may be authorized. This is the

File ^Edit ^View ^Tools ^Options ^Structure ^Text^Help

Context: exp e<exp> <exp> e fun fix if while

λ rc. λ wc .
 let i = ropen (rc, INPUT_TS) in
 let o = wopen (wc, OUTPUT_S) in
 letvar v := get (i) in
 while v != EOF do

put(v, o);
v := get (i)

 end
: ?

Figure 7. Downgrade procedure

let<id><exp>e let<id>e<exp> letvar<id><exp>e
letvar<id>e<exp> e;<exp> <exp>;e

Type variableτ is the type ofrc and corresponds to the read
class of the subject,δ is the type ofwc and corresponds to
the subject’s write class,γ is the access class off, andπ the
access class ofg. The type indicates that the copy routine is
capable of copying a filef, classified at levelγ, to a fileg at
an equal or higher levelπ (γ ⊆ π) as long as the read class
of the subject dominatesf (γ ⊆ τ) and its write class is
dominated byg (δ ⊆ π), which is what we want. The editor
allows a user to build a program while simultaneously

File ^Edit ^View ^Tools ^Options^Structure ^Text^Help

Context: exp apply fun if while let

λ rc . λ <id>. <exp>
: ∀ τ , δ, γ. τ → δ → γ

Figure 3. Editor window after supplying rc

letvar ; set! ^ := ^ ~ ^ && ^ || ^ <> ^ +^ -
< ^ <= ^ > ^ >= ^ :: ^ (,)

and selecting fun again

File ^Edit ^View ^Tools ^Options^Structure ^Text^Help

Context: exp e<exp> <exp> e fun fix if while

λ rc. λ wc . λ f . λ g.
let i = ropen (rc, f) in
let o = wopen (wc, g) in
letvar v := get (i) in
while v != EOF do

put (v, o);
 v := get (i)

end
: ∀ τ, δ, γ, π with γ ⊆ τ, δ ⊆ π, γ ⊆ π .

τ → δ → γ → π → unit

Figure 4. Editor window upon completion of

let<id><exp>e let<id>e<exp> letvar<id><exp>e
letvar<id>e<exp> e;<exp> <exp>;e

secure copy procedure

inferring types at each step.

Now suppose we try to tamper with the procedure by also
copyingf to an unclassified fileOUTPUT_U. We insert the
declaration wopen(wc, OUTPUT_U) and the statement
put(v, h) in the loop body. The result is shown in Figure 5.
Notice what happened to the inferred type. It indicates that
the procedure is not as general as one might have thought.
Specifically, it can copy only unclassified files:

∀ τ, π. τ → U → U → π → unit

If invoked to copy any file except an unclassified one, it will
raise an exception. In contrast, the type of the original file-
copy procedure indicates that it is able to copy files
classified at any level. The fact that the type of the modified
procedure does not reflect this desired property is an
indication that the procedure is suspicious.

Consider what would happen if we tried to execute the
rogue procedure without first subjecting it to our type
(security) analysis. When called by a multilevel subject, say
with write class unclassified and read class secret, and a file
f at secret, the procedure will write a secret value to the
unclassified fileOUTPUT_U. OpeningOUTPUT_U will
succeed because the subject has write class of unclassified.
Unfortunately this is the state of affairs in practice today.
Many programs are being used by multilevel subjects and
they could very well be programs like this rogue procedure

File ^Edit ^View ^Tools ^Options^Structure ^Text^Help

Context: exp e<exp> <exp> e fun fix if while

λ rc. λ wc . λ f . λ g.
 let i = ropen (rc , f) in
 let o = wopen (wc, g) in
 let h = wopen (wc, OUTPUT_U) in
 letvar v := get (i) in
 while v != EOF do

put (v, o) ;
 put (v, h) ;
 v := get (i)
 end
: ∀ τ , π . τ → U → U → π → unit

Figure 5. Rogue copy procedure

let<id><exp>e let<id>e<exp> letvar<id><exp>e
letvar<id>e<exp> e;<exp> <exp>;e

to another file whose security class is at least as high. We
will show how the editor we are developing can reveal an
attempt to tamper with the procedure so that it also copies
the input file to an unclassified third file.

Our second example shows that there may be times when
the editor will prohibit some code satisfying a certain
specification from being written. The code must therefore
be verified within a more expressive logic. The editor can
greatly reduce the amount of code that needs to be verified
in this way.

Finally, we illustrate the behavior of the editor when
writing a procedure that downgrades information. In this
case, the editor deems the function insecure. If, in fact, it is
an authorized downgrade, then the function would have to
be verified in some other logic as above.

3.0.1 Secure file copy: The copy procedure has four
parametersrc, wc, f, andg; rc andwc are the read/write
classes of a multilevel subject,f is the file to be copied and
g is the result. Using the editor, we begin with the initial
window in Figure 1. Here <exp> is a placeholder. All
placeholders are delimited by angle brackets.

At each stage, the editor infers a type (security
classification) for the program and displays it below the
program. At this point, the editor reports that the type of the
copy procedure is∀ α.α because it knows nothing about its
definition as yet; it is only a placeholder thus far.

When the user selects <exp> with the mouse, a menu of
choices for the various kinds of expressions appears at the
bottom of the window. These choices permit the user to
elaborate the expression. A sample of the selections and
their results is given in Table 1. One of the choices,fun, is
a function. Selecting it gives us a placeholder for a function
of one argument, as shown in the window of Figure 2.

File ^Edit ^View ^Tools ^Options ^Structure ^Text ^Help

Context: expList

<exp>
: ∀ α . α

Figure 1. Initial editor window

The editor now infers a mapping type for the program but
it still knows nothing as yet about the relationship between
τ andδ. Next we fill in the identifier placeholder withrc, a
subject’s read class, and select another function for the
expression placeholder, giving the window in Figure 3.

Now we get a type that looks more like the final type of
the copy routine, but without more of the definition
available, nothing more can be inferred about its type. We
now complete the definition using operations from the
TCB, giving the program in Figure 4.

The type inferred for the program now has three subtype
constraints.

γ ⊆ τ, δ ⊆ π, γ ⊆ π

Table 1: Sample Editor Selections

Selection Result Type

fun λ <id> <exp> ∀α.∀β.α→β

while while <exp> do
 <exp>
end

unit

; <exp> ; <exp> ∀α . α

|| <exp> || <exp> bool

let let <id> = <exp> in
<exp> end

∀β . β

letvar letvar <id> := <exp> in
 <exp> end

∀γ . γ

File ^Edit ^View ^Tools ^Options^Structure ^Text^Help

Context: exp apply fun if while let

λ <identifier> . <exp>
: ∀ τ, δ. τ → δ

Figure 2. Editor window after choosing fun

letvar ; set! ^ := ^ ~ ^ && ^ || ^ <> ^ +^ -
< ^ <= ^ > ^ >= ^ :: ^ (,)

is actually an advanced type system, specifically, one
supporting polymorphism and subtypes. There is a natural
correspondence between information flow analysis and type
checking. Ordinary types likeint andreal, for instance,
can be replaced by security classes likeL (low) and H
(high). Further, just asint is a subtype ofreal in a
traditional language, we can regardL as a subtype ofH,
reflecting the fact that information flow fromL to H is
permitted. A type system that supports polymorphism with
respect to types therefore supports polymorphism with
respect to security classes. Such a system affords us an
opportunity to accurately capture information flow in
procedures that accept inputs of arbitrary security classes, a
source of difficulty in Denning’s original approach.

We are developing an algorithm for deciding whether a
given program has a type in our type system. This amounts
to the algorithm having to find atype derivation for the
program, using the rules of the type system. If a derivation
cannot be found, then, since the rules characterize secure
information flow, the algorithm reports that the program has
an illicit flow with respect to a given flow policy. If a
derivation can be found, then the algorithm reports that the
program is secure by inferring a type for the program. The
type reveals any flow assumptions, as subtype constraints,
that are needed in the derivation.

We intend to implement the complete algorithm as a
language-sensitive editor for a traditional block-structured
language. This kind of editor is smart in that as a program is
edited, it can be analyzed behind the scenes so that a
programmer receives immediate feedback. The editor is
said to be language sensitive because these analyses may
determine whether a program satisfies certain restrictions of
the language and, in some cases, even correct it if it fails to
do so. We describe below a prototype language-sensitive
editor that we are building for a subset of the full type
system for secure information flow. It illustrates some
important features of the algorithm we have developed thus
far. We give editor snapshots that show how the editor
responds to certain inputs during the course of writing some
sample programs.

3. Sample Applications Using the Editor

Before showing how the editor behaves, we must first
describe briefly some technical details of the type system on
which the editor is based.

We take as our types the security classesU, C, S, andTS,
ordered according to the following subtype relation:

U ⊆ C ⊆ S ⊆ TS.

Intuitively, what this means is thatU is a subtype ofTS
since flows fromU to TS are permitted. These types form

the primitive or base types of the system and may vary from
one flow policy to another. There is a form of type in the
system called atype scheme and it has the form

∀ α1 , ... ,αn with κ. τ

The variablesα1,... αn are calledtype variables and are
universally quantified. For our purpose, they can be
assumed to range over the primitive types. The setκ is a set
of subtype constraints, expressed at the level of type
variables and primitive types. For example,α ⊆ U is a
constraint that conveysα is a subtype ofU. The symbolτ
stands for a data type, which for our purpose, will consist
only of amapping type written τ1 → τ2. An object of this
type is a procedure that maps elements of typeτ1 to
elements of typeτ2.

In our examples, we use operations from a hypothetical
trusted computing base, or TCB. Among these are
operations for opening files, for reading (ropen) and writing
(wopen), and I/O (get andput). Ropen expects a subject’s
read class (rc) and a file to be opened and ensures that the
read class dominates the access class of the file. On the
other hand, given a subject’swrite class (wc) and a file to be
opened,wopen ensures that the access class of the file
dominates the write class.

We adoptget andput as our input and output operations;
get (i) returns the next element of the input file descriptor i,
andput (v, o) writes value v to the output file descriptor o.
Each of these operations has a type built into the editor. For
example,put expects to be called with a value classified at
some level, sayβ, and a file descriptor classified at least as
high, sayδ, and writes the value to the file. This is conveyed
by the type scheme

∀ β, δ with β ⊆ δ. β → δ → unit

Here the typeunit indicates thatput is executed only for its
effect and does not return a result. The subtype constraint
ensures the *-property. Consequently, among the allowable
types forput is

C → S → unit

sinceC ⊆ S, but not

S → C → unit

becauseS is not a subtype ofC. Notice that withput typed
as above, we protect it against being called to write down
for a multilevel subject.

We now give three sample programs to illustrate the
editor. Each is intended to be executed by multilevel
subjects. Our first example is a secure procedure to copy a
file. It copies the elements of a file with some security class

 Abstract

We introduce a tool we are developing that will allow
designers of trusted applications to isolate those portions of
a system where an information flow policy is being violated.
The tool is a language-sensitive editor that checks a
program for policy violations incrementally as the program
is developed. What is novel about our approach is that the
checking occurs as a form of type checking.

1. Introduction

Mandatory access control policies are concerned with the
authorizations of individuals to access information based on
its sensitivity. Within the context of automated information
systems, each access by a subject to an object is mediated
based on fixed labels associated with both. In general,
applications will be executed by single-level subjects. If
viewed from the perspective of the Bell and LaPadula
model [2], a single-level subject will be constrained by the
simple security property and the *-property such that it can
neither obtain read access to objects which it does not
dominate nor gain write access to objects which do not
dominate it, respectively. Most applications, e.g. word
processing systems, software engineering utilities, etc., can
be executed by single-level subjects; in fact, careful
application design can permit even complex multilevel data
structures to be managed by single-level subjects [11].

There are, however, situations in which it is useful to
have applications which are designed to violate the rules of
a system’s security policy enforcement mechanism, but
which are trusted to do so only in a manner commensurate
with externally-established authorizations. For example, in
the case of the *-property of the Bell and LaPadula model
[2], the application would be designed so that, when
executed by a subject with a range of access classes, viz. a
multilevel subject, the subject could read from an object
with a high access class label and write to an object with a
lower one. The multilevel subject will be constrained by the
underlying mandatory policy, enforced through
comparisons with the class defining the upper bound of its
range on read accesses and by the lower bound of its range
for write accesses.

Trusted applicationsare specifically designed to be

executed by multilevel subjects and are part of a system’s
trusted computing base (TCB). Careful security
engineering of the combined trusted application and TCB
will provide measurable assurance that the trusted
application will behave as specified and that its potential to
violate security policy in an arbitrary and perhaps malicious
manner is not realized. Unfortunately, current practice in
the development of large systems does not always treat the
engineering of the code to be executed by multilevel
subjects with adequate rigor. Hence an environment ripe for
the insertion and exploitation of malicious software exists.
This makes certification, software maintenance, and
continued accreditation difficult. This paper reports
ongoing research to develop a new tool to support the
development of large trusted applications.

Powerful formal systems for reasoning about security
have been studied [3][10]. Given their expressiveness, and
that often useful proof methodologies are missing, these
systems have not been widely adopted in practice. We
believe that this is because the methods offer, at most,
formal systems to reason about security properties;
typically there is no automated support for practitioners.
However, reasoning about whether programs violate
mandatory access control (MAC) policies, such as
articulated in the Bell and LaPadula model [2], does not
require such power. This was observed by Dorothy Denning
in her seminal work on secure information flow in computer
systems. She described a way that compilers could
efficiently check programs for secure implicit and explicit
information flow [5], [6]. Unfortunately, this work was
never widely used in practice, according to Denning [8].

2. An Editor for Trusted Applications

We are developing a new framework to carry out an
extension of the analysis envisioned by Denning. The
framework is a formal system of simple rules with which
one can make judgements about information flow in
programs. What is interesting is that these rules follow
rather directly from a type system for a polymorphic
programming language with subtypes. Many such systems
have been proposed [9][14][15].

So the technical basis for the tool described in this paper

A Practical Tool for Developing Trusted Applications

Cynthia E. Irvine Dennis Volpano
irvine(volpano)@cs.nps.navy.mil

Department of Computer Science, Naval Postgraduate School
Monterey, California 93943

Published in Proceedings Eleventh Annual Computer Security Applications Conference, New Orleans, LA, December
1995, IEEE Computer Society Press, Los Alamitos, CA, pp 190-195.

